Recent Progress in Post-Processing OVERFLOW-D Simulations

David Edwards
Mike Schechterman
Intelligent Light

Earl Duque
Northern Arizona University

Outline

- On-going research in post-processing OVERFLOW-D simulations
 - Utilization of rotorcraft domain knowledge
 - ➤ Particle Integration
- Open discussion

Utilization of Rotorcraft Domain Knowledge to Optimize Process Post-Processing

Goal: Improve performance in terms of computational & memory resources

Areas examined:

- 1. Reduce reading in grids that are Cartesian and construct grids on-the-fly using "header information" to construct the grid.
- 2. Construct transient rigid-body grids on-the-fly using grid transformations for each transient step instead of reading in grid data at each node point.
- 3. Minimize start-up operations at each transient step

Proposed Transient Data Flow

Impact of Rotorcraft Domain Knowledge

Utilizing Cartesian and Rotorcraft Knowledge Post Processing allows:

- ☐ Grid file size can be reduced substantially
 - ➤ 60% for a steady solution
 - > ~75 % for a transient solution
 - Allows for designing new post-processing OVERFLOW-D grid file
- ☐ Startup time per transient time-step is faster

Motivation for Improvements in Particle Integration

Image courtesy of Mark Potsdam, Army Rotorcraft Aeromechanics Branch, NASA Ames Streakline Integration - UFAT

Analyze Streakline Calculation In Flows with Moving Bodies

- Review current streakline integration schemes (pV3, GEL, UFAT)
- Using OVERFLOW-D data, benchmark streakline integration scheme (a 4th order implicit backward differentiation BD4 scheme) and indicate deficiencies.
 - > Test with fine and coarse time steps
 - Release streaklines near moving walls where problems will occur
- Evaluate need for additional modeling
 - Restriction of streaklines around solid walls
 - Integration scheme approximations

Simulations for Numerical Studies

- □ Created by Northern Arizona University
 - ➤ Generated on NAU Beowulf Cluster
- ☐ Two simulations
 - ➤ Rotating body
 - > Rotor at hover

Numerical Studies

- □Impact of streakline integration method
 - ➤ Backward Difference (BD4) o 4th order local error, 3rd order global error
 - Runge-Kutta (RK4)
 o 4th order local error, 3rd order global error
- □Impact of Time Step
 - > Time steps of 1, 2, 4, 8 degrees
- □Impact of Temporal Sub-steps
 - ➤ No steps, 10 sub-steps
 - Linear in computational space

Streakline Model Problem 1

- 85 Grids
- □ 360 Time Steps (1degree rotation per time-step)
- \Box Inlet Mach Number = .2

Basics of Numerical Study

- ☐ Series of streaklines calculations were performed
 - Integration method
 - > Time step
 - ➤ Time sub-step
- □ Compare results to a baseline case (BD4 with 1 degree time-step).
 - Examined streakline at a specific time and determine distance from baseline case at same time
 - > Selected six points in field for analysis

Point	Time	X	Y	Z
T0	751.9531	-19.50000	-2.25000	-3.75000
T1	777.5244	-15.35526	-2.67705	-3.05959
T2	841.4523	-1.65766	-1.56723	-4.28803
T3	892.5947	9.10078	0.92924	-2.84787
T4	943.7371	18.57602	-3.86564	-4.06998
T5	994.8795	27.44151	-4.28093	-7.00792
T6	1020.451	31.87707	-4.72556	-7.52175

Location of Reference Points

Point T1

Point T2

Point T3

Point T4

Point T5

Point T6

Streakline Model Problem 2 Rotor at Hover

- **□** 160 Grids
- □ 72 Time Steps (5 degree rotation per time-step)
- □ 3 Bladed Helicopter System

Streaklines in Hover Simulation

- □ Release a line of streaklines (40) every timestep for 5 cycles
- □ 14400 particles released
- ☐ Original BD4 lost 457 particles
- New BD4S and RK4S lost 30 particles
- □ 15x reduction in lost particles

Conclusions

- □ Neither RK4 or BD4 with linear interpolated time sub-steps show 4th order behavior
 - ➤ BD4 without time sub-step interpolation shows largest error growth
- ☐ Applying time sub-steps has significant impact
 - > Integration near bodies
 - ➤ Integration in off-body
- □ Number of lost particles in streakline calculation can be significantly reduced by using time substeps, improved 3D interpolation and wall modeling

Summary

☐ What have we learned?

- Significant improvements can be made to visualization techniques when using rotorcraft domain knowledge
 - o Speedup in visualization techniques
 - o Reduce amount of data to be read
 - o Sharing of Solver Knowledge with Post Processing
- Particles loss in Streakline calculation is impacted:
 - o Integration Scheme
 - o Streakline integration time step
 - o Temporal and Spatial Interpolation
 - o Wall modeling